Какая технология печати лучше? Термическая струйная или пьезоэлектрическая струйная? И чем? Как печатают разные принтеры

Вступление

Наверное, каждому из нас хотелось бы узнать, как же устроен картридж в принтере, как же там все работает. И как компаниям, производящим принтеры удается достичь такого потрясающего качества печати и разрешения. На момент написания статьи компания Lexmark достигла разрешения 4800x1200 в принтере z65.

Зарождение технологии

В недалеком прошлом несколько, пока неизвестных компаний начали задумываться, как же упростить жизнь себе и пользователю и не мучаться с печатной машинкой и матричными принтерами которые к тому же сильно шумят. Хотелось, чтобы краска сама наносилась на поверхность бумаги. И вот разработку термической технологии начали в 1984 г. компании HP и Canon. Сначала дело шло медленно и требовало много денег, никто не хотел вкладывать деньги в неизвестное будущее. Фирма Hewlett-Packard создала первый струйный принтер с использованием пузырьковой технологии ThinkJet в 1985 году. Сейчас Canon и Hewlett-Packard владеют большинством патентов на эту технологию и, путем обмена лицензиями, им удалось захватить практически весь мировой рынок. И только в 1990-х гг. удалось добиться приемлемого уровня качества, скорости работы и стоимости. Позже к HP и Canon с целью дальнейшей работы над термическими принтерами присоединилась компания Lexmark, и это привело к созданию сегодняшних принтеров с высоким разрешением.
Как видно из названия, в основе термического (или электротермического) формирования струи лежит увеличение температуры жидких чернил под действием электрического тока. Это повышение температуры обеспечивается нагревательным элементом, находящимся в эжекционной камере (проще говоря в картридже). При этом некоторая часть чернил испаряется, в камере быстро нарастает избыточное давление, и из эжекционной камеры через сопло выбрасывается маленькая капелька чернил. В течение одной секунды этот процесс многократно повторяется. Представляете, как нужно было инженерам извращаться, чтобы получить данный результат. Далее поподробней…

Термическая система выброса капель

Качество печати, скорость и эффективность работы определяются многими факторами, но главными факторами, определяющими поведение чернил при необходимых температурах и давлениях, являются конфигурация эжекционной камеры, а также диаметр и точность изготовления сопла. Традиционные цветные струйные принтеры способны наносить до двух капель чернил в пределах точки. Используя чернила четырех основных цветов (черного, голубого, пурпурного и желтого) и нанося две капли чернил в пределах точки, традиционный струйный принтер воспроизводит до восьми различных цветов на точку. К этим восьми цветам относятся белый, черный, голубой, пурпурный, желтый, красный, зеленый и синий цвета. Дополнительные цветовые оттенки создаются путем полутонирования, предусматривающего нанесение цветных точек в границах определенной области изображения таким образом, что при взгляде на распечатку данная область выглядит как цветовой переход, имеющий новый оттенок. На поведение чернил при нагревании и выбросе из сопла, наряду с характеристиками самих чернил (их вязкостью, поверхностным натяжением, способностью к испарению и др.), оказывают влияние также характеристики канала, ведущего к соплу, и точки выхода в сопло. Большое значение для обеспечения правильного выброса чернил из сопла имеют также характер изменения чернильного мениска (выпуклая или вогнутая поверхность жидкости в узких трубках или между близко расположенными твердыми стенками) в сопле после эжекции и повторное заполнение эжекционной камеры (рис 1).

Механическое создание термической струи

Шаги формирования и выброса капли
Шаг первый - создаем избыточное давление
Формирование термической чернильной струи начинается в печатающей головке картриджа (рис 2). Электрический импульс порождает на нагревательных элементах тепловой поток, эквивалентный более чем двум млрд. ватт на квадратный метр. Это примерно в 10 раз больше, чем поток на поверхности Солнца! К счастью, поскольку длительность теплового импульса составляет всего 2 миллионных доли секунды, то хотя температура в это время увеличивается со скоростью 300 млн. градусов в секунду, поверхность нагревательного элемента успевает за это время нагреться лишь - примерно - до 600°C, разве это не может не радовать.

Шаг второй - попробуем сформировать чернильную каплю.
Поскольку нагревание идет чрезвычайно быстро, в реальности температура, при которой чернила уже не могут существовать в виде жидкости, достигается лишь в слое толщиной менее одной миллионной доли миллиметра. При такой температуре (примерно 330°C) тонкий слой чернил начинает испаряться, и происходит выталкивание пузырька из сопла (рис. 3). Пузырек пара образуется при очень высокой температуре, и поэтому давление пара в нем огромное - около 125 атмосфер, т. е. в четыре раза больше давления, создаваемого в современных бензиновых двигателях внутреннего сгорания.
Шаг третий - охлаждаем камеру
Такой пузырек, обладающий громадной энергией, действует как поршень, выбрасывающий чернила из сопла на страницу со скоростью 1270 сантиметров в секунду (рис. 4). Образующаяся при этом капля весит всего 18 миллиардных долей грамма! По командам, поступающим от драйвера принтера, 400 сопел могут активизироваться одновременно в любых сочетаниях.

Шаг четвертый - заполняем камеру
Повторное заполнение камеры эжекционной камеры занимает менее 100 миллионных долей секунды, после чего камера вновь готова к работе (рис. 5). В термических струйных принтерах цикл, включающий формирование и выброс чернильной капли, охлаждение и повторное нагревание камеры, может повторяться до 12 тысяч раз в секунду.
Пройдемся немного по фактам.
Вот некоторые данные, характеризующие процесс образования пузырьков они просто потрясают, когда я лично увидел эти цифры, то не поверил, хотел найти еще доказательств, и когда чу3ть ли не в каждом источнике были эти цифры я поверил, так, что поверьте и вы.

Тепловой поток у поверхности:
o нагревательного элемента = 109 Вт/м2
o Солнца = 108 Вт/м2
o Нагревание в тонком слое до температуры 600°C
o Точка плавления алюминия = 660°C
o Начальное давление в пузырьке - 125 атм
o Таково давление в океане на глубине 1 000 м
Различия между "пузырьковой струей" и "чернильной струей"

Кажется, что почти одинаковая технология, везде используется струя, но попробуем найти различия. Хотя первоначально струйная технология создавалась компаниями HP и Canon, сейчас термин "пузырьковая струя" стал ассоциироваться с Canon, практически отделившись от технологии "чернильной струи", которую разрабатывают Lexmark и НР.
Однако в действительности оба этих термина обозначают почти идентичные системы. Единственное серьезное различие между ними состоит в том, что в системе "пузырьковой струи" Canon вектор процесса испарения чернил и формирования пузырька не совпадает с направлением оси, проходящей через нагревательный элемент и сопло, а ориентирован под углом 90° к нему. Замудренное предложение, но я думаю, что читатели люди образованные и поняли, что я хотел сказать.

Чернильные картриджи

Так как делиться струйная технология, также можно и делить тип картридже используемых в принтерах. Резервуары, из которых чернила подаются в печатающую головку, можно условно разделить на два конструктивных типа. Во-первых, широко используется моноблочная система, объединяющая встроенный чернильный резервуар и эжекционный блок. Она обладает тем преимуществом, что при каждой смене чернильного резервуара заменяется и печатающая головка, что способствует поддержанию высокого качества печати. Кроме того, она проще по конструкции, и в ней легче выполняются замены. Во второй, конструктивно более сложной системе печатающая головка отделена от резервуара для чернил, и здесь заменяется только этот резервуар при его опорожнении. Да, кстати картриджи у которых печатная головка вместе с картриджем и стоит дороже, но на это можно закрыть глаза, так как при замене картриджа вы получаете новую печатающую головку и новое, хорошее качество.

Изготовление печатающих головок

Изготовление печатающей головки - это сложный процесс, осуществляемый на микроскопическом уровне, где точность измерений определяется микронами. Основные материалы, используемые для изготовления эжекционной камеры, канала для подачи чернил, электронной управляющей схемы и нагревательных элементов, подобны материалам, используемым в полупроводниковой промышленности, где тончайшие проводящие металлические и изолирующие слои проходят прецизионную лазерную обработку. Такая технология требует больших инвестиций и в разработку, и в производство, и это одна из главных причин того, что в этой сфере решаются действовать очень немногие компании.

Пример моноблочного картриджа

Пена в резервуаре для чернил играет роль губки, впитывающей жидкие чернила, так что чернила непрерывно подаются к печатающей головке, и при этом нет ни нежелательной утечки из картриджа под действием силы тяжести, ни истечения чернил из самой печатающей головки. На основании моноблочного картриджа находятся электрические контакты и печатающая головка - ключевой элемент всего процесса струйной печати; чернила подаются к печатающей головке через совокупность каналов, идущих от резервуара.

Расположение и число сопел

Печатающая головка представляет собой совокупность множества микро комплектов, состоящих из эжекционных камер и связанных с ними сопел, расположенных в шахматном порядке с целью увеличения вертикальной плотности сопел. При таком расположении сопел их число на расстоянии в сантиметр (точнее 1,27 см) может достигать 208, как это имеет место, например, в черных картриджах моделей Lexmark Z, так что удается достичь разрешения в 1,44 млн. точек.

Перспективы

Качество печати определяется многими факторами, но главные из них - это размер точки, вертикальная плотность точек и частота выброса капель через сопло; именно эти показатели являются основными критериями для дальнейшей работы над печатающими головками, будь то головки термического или пьезоэлектрического типа. Термические головки имеют некоторые преимущества по сравнению с электромеханическими головками, поскольку ключевая технология их изготовления подобна той, которая применяется при изготовлении микропроцессорных чипов и других изделий полупроводниковой электроники. Стремительный прогресс в этих областях идет на пользу термической технологии, и можно ожидать, что в ближайшие годы будут достигнуты еще более высокие разрешения и более высокая скорость печати.

Преимущества и недостатки

Как и у каждой технологии здесь присутствую свои преимущества и недостатки. Термическая струйная печать имеет несколько преимуществ по сравнению с конкурирующей с ней пьезотехнологией. Например, простота конструкции и тесная аналогия с производством полупроводников: это означает, что предельная себестоимость в производстве здесь будет ниже, чем для конкурирующей технологии. Конфигурация эжекционных камер позволяет располагать сопла ближе друг к другу, что дает возможность достигать более высокого разрешения. Отсутствие какого-либо звука при работе печатающей головки. Как я не искал, но недостатки обнаружить мне не удалось. Может в скором будущем они появятся, а пока на этом всё, думаю мой обзор нанесения краски на бумагу окончен и ты мой дорогой читатель получил полезную информацию и у меня не зря было потрачено время на поиск информации и изложение ее на страницах журнала.

В этой статье поговорим про такой популярный вид печати, как пьезоэлектрическая струйная печать.

Струйная печать печать: что это такое

Пьезоэлектрическая струйная печать это вид печати, при котором изображение наносит на запечатываемый материал с помощью печатающей головки. Такая головка состоит из сотен мелких сопел, из которых под действием мембраны выталкивается жидкий краситель - краска.

Технология печати пьезоэлектрическая струйная позволяет получать очень качественное изображение, из высоким разрешением. Размер капель с красителем в диаметре составляет десятки микрометров, что меньше, чем толщина человеческого волоса.

Процесс пьезоэлектрической струйной печати

Сам процесс печати выглядит так: запечатываемый материал подается из заданной скоростью, а перпендикулярно его движению, перемещается печатающая головка. Она движется от одного края материала к другому, после этого материал продвигается на определенный шаг, и печатающая головка делает новый проход.

Таким образом, запечатывается весь материал.

Этот способ печати разрабатывался из середины 70-х годов, но впервые в серийном производстве применила компания Epson, и в ее принтерах можно было увидеть пьезоэлектрическую струйную печать.

Принцип печатания

Название печати происходит из-за пьезоэлементов, которые применяются в этой технологии. Дело в том, что краситель выталкивается из микроскопических сопел под действием давления, которое создают пьезокристаллы. Эти элементы способны под действием электрического тока изменять свои размеры.

Таким образом, при изменении положительного тока на отрицательное, происходит изменение размера кристалла, и он подобно поршню выталкивает микроскопическую частичку краски из сопла, которая попадает на материал.

Объем капли краски зависит от размеров сопла, эжекционной камеры и силы, с которой кристалл выталкивает краситель наружу.

Таким образом, изменяя электрическое поле, можно управлять изображением, которое нужно получить.

Пьезоэлектрическая печать преимущества и недостатки

Как и любые технологии, пьезоэлектрическая печать пьезоэлектрическая струйная цветная имеет недостатки и преимущества. Кратко их рассмотрим.

Преимущества

Недостатки

1. Иногда, для получения высококачественного изображения, печатающая головка должна несколько раз пройти по той самой странице. Это негативно влияет на скорость и себестоимость печати.

2. Через засохшую краску или попадания воздуха сопла могут закупориваться, что значительно ухудшает качество печати. Для восстановления свойств печатающей головки, нужно ее очищать.

Часто причиной засыхания сопел принтера является использование некачественных поддельных красителей.

3. Принтеры, которые работают на этой технологии, имеют повышенные требования к качеству материала. Ведь краска имеет жидкую консистенцию, и может расплываться на рыхлых бумагах, что ухудшает качество полученного отпечатка. Он будет менее четким, с размытыми границами.

Правда, в последние годы компании Epson разработала новый вид чернил (Epson DURAbrite), который не требует высоких требований к качеству бумаги. Кроме этого, такие краски имеют повышенную устойчивость к воде и солнечному свету.

4. Иногда возможен дефект, когда капли краски не попадают точно на нужное место запечатываемого материала и при детальном рассмотрении это можно заметить.

5. Как правило, печатающая головка устанавливается сразу на принтер, и не является переменной. Кроме этого, эта часть устройства принтера достаточно дорога, в сравнении с головками принтеров, которые используют другие технологии печати.

Иногда, замена печатающей головки по стоимости может равняться едва не цене самого принтера.

Но на бумаге для струйной печати, качество изображения будет очень хорошим.

Как видим, пьезоэлектрическая широко применяется, благодаря своей надежности и качеству печати. И все это при невысоких затратах.

Верим, что наш ответ на вопрос “Пьезоэлектрическая струйная печать это” вас удовлетворил и вы получили информацию про принцип работы, преимущества и недостатки этого вида печати.

В заключение отметим, что кроме описанной нами технологии, в принтерах (пьезоэлектрический принтер) часто используется термоструйная, пузырьковая или . Но это уже тема другой статьи.

Некоторые из открытий или изобретений, уже давным-давно ставшие привычными, со временем обрастают разнообразными красивыми мифами и легендами.
В одном из таких повествований рассказывается о сотруднике небольшой исследовательской лаборатории, принадлежавшей крупной компьютерной фирме. После бессонной ночи, проведенной в работе над новой капризной конструкцией какой-то электронной штуковины, этот сотрудник по невнимательности положил паяльник рядом с наполненным канифолью шприцем (хочется приписать, что в нем были чернила, но это не так). Естественно, в итоге была испорчена спецодежда, но самое главное - возникла идея термоструйной печати. Белый халат с пятном отправился в химчистку, а струйная технология стараниями Canon, Hewlett-Packard, Epson, Lexmark и других компаний пришла в офисы и дома, поражая своей доступностью и красочностью.

Почему струйник?

В последние несколько лет компьютерная индустрия переживает самый настоящий чернильный бум. Струйные принтеры для многих пользователей являются наиболее доступными и универсальными печатающими устройствами. Получаемые на них изображения во многих случаях превосходят по качеству типографские оттиски, а максимальная скорость печати уже вплотную приблизилась к показателям производительности младших моделей лазерных принтеров. Сравнимая с любительскими фотографиями из мини-лабов полноцветная фотореалистичная струйная печать стала главным козырем производителей струйных принтеров в борьбе за привлечение новых покупателей.

В погоне за покупателем и на зависть конкурентам постоянно уменьшается размер капель и разрабатываются новые технологии для улучшения цветопередачи. От новых названий и логотипов голова уже идет кругом. Естественно, что у наиболее любознательных возникает вопрос: так уж уникальны все принципы и идеи, которыми гордится каждый из производителей?

В гордом одиночестве

Уже довольно давно в этом секторе рынка образовалось два лагеря. В одном единолично правит бал Epson с пьезоэлектрической технологией, а в другом собрался целый альянс приверженцев «кипящих чернил».

В основе пьезоэлектрического метода печати лежит свойство некоторых кристаллических веществ изменять свои физические размеры под действием электрического тока. Самым ярким примером служат кварцевые резонаторы, применяемые во многих электронных устройствах. Это явление было использовано для создания миниатюрного насоса, в котором изменение напряжения вызывает сжатие небольшого объема чернил в узком капиллярном канале и моментальный выброс его через сопло.

Печатающая головка пьезоэлектрического струйного принтера должна иметь высокую надежность, поскольку в силу довольно большой стоимости она практически всегда встроена в принтер и не меняется при установке нового чернильного картриджа, как это происходит в случае термической струйной печати. Такая конструкция пьезоэлектрической головки имеет определенные преимущества, но при этом существует постоянная опасность выхода принтера из строя по причине попавшего в систему подачи чернил пузырька воздуха (что может произойти при смене картриджа) или обычного простоя в течение нескольких недель . При этом сопла закупориваются, качество печати ухудшается, а для восстановления нормальных режимов требуется квалифицированное обслуживание, которое часто невозможно провести вне сервисного центра.

Не отрываясь от коллектива

Пока Epson шла своим собственным путем, периодически удивляя компьютерное сообщество очередным прорывом, остальные игроки рынка струйной печати не менее успешно применяли печатающую головку иной конструкции. Большинство из них считают свои разработки уникальными, хотя их суть до банального проста, а разница зачастую заключается лишь в названии.

Так, Canon использует термин Bubble-Jet, который вольно можно перевести как «пузырьковая печать». Остальные же не стали городить огород и согласились с более привычным словосочетанием «термоструйная печать».

Термические струйные принтеры работают подобно гейзеру: внутри камеры с ограниченным объемом чернил благодаря миниатюрному нагревательному элементу образуется пузырек пара, который мгновенно увеличивается в объеме, выталкивая каплю красителя на бумагу.

Применяя такую технологию, нетрудно получить миниатюрные печатающие элементы, расположенные с большой плотностью, что сулит разработчикам потенциальное увеличение разрешающей способности с солидным запасом на будущее. Однако у термической струйной печати есть и оборотная сторона. Из-за постоянного перепада температур постепенно происходит разрушение печатающей головки, и в результате ее приходится заменять вместе с чернильным картриджем.

Больше названий - громких и разных!

Пузырьки пузырьками, а простыми картинками уже давно никого не удивить. Вот и приходится бороться за каждый пиколитр в капле, за каждый оттенок на бумаге. Но способов, позволяющих повысить качество конечного изображения, на самом деле не так уж и много. Самый очевидный и доступный вариант заключался в увеличении количества цветов чернил. К четырем базовым цветам (черному, голубому, малиновому и желтому) многие производители добавили еще два - светло-голубой и светло-малиновый. В итоге появилась возможность воспроизводить более светлые оттенки, не уменьшая плотность наносимых на бумагу точек, что позволило сделать растровую структуру изображения на светлых участках, где она особенно хорошо различима, менее заметной. В Canon такую технологию назвали PhotoRealism, в Hewlett-Packard - PhotoREt, а в Epson - Photo Reproduction Quality.

Но прогресс, стимулируемый конкурентной борьбой, не стоит на месте. Следующий шаг на пути к идеалу был сделан путем уменьшения и динамического изменения размеров чернильной капли, а вместе с ней и конечной точки на бумаге. Управляя объемом «порции» наносимых на бумагу чернил, можно добиться более светлых оттенков, не увеличивая расстояния между точками. Это дает возможность сделать растровую структуру еще менее заметной.

Без дополнительных ухищрений и значительного изменения технологического процесса подобного эффекта могла добиться разве что Epson. Дело в том, что принцип работы пьезоэлектрической головки позволяет управлять размером капли, изменяя величину управляющего напряжения, прикладываемого к пьезоэлементу. Эта технология получила название Variable Dot Size. Ну а приверженцам пузырьковой печати пришлось серьезно поработать над изменением конструкции сопел. В каждом из них разместили несколько нагревательных элементов разной мощности.

Включая их по одному или все одновременно, можно получать капли различных размеров, как это и происходит в современных термических струйных принтерах. Canon окрестила свои разработки в этой области Drop Modulation, а HP применила уже готовое название с дополнительными индексами - PhotoREt II и PhotoREt III. Помимо возможности управления размером капли появилась и возможность последовательного нанесения нескольких капель в одну и ту же точку поверхности листа бумаги.

Но качество печати зависит не только от технического совершенства конструкции самого принтера, но и от других, не менее значимых факторов.

За линией струйного фронта

С увеличением разрешающей способности и скорости печати выяснилось, что погоня за улучшением этих характеристик сама по себе значительного выигрыша дать не сможет, если не улучшить носитель изображения, то есть бумагу. Казалось бы, что может быть проще бумаги? Но не тут-то было! Любые «хитрые» технологии будут бессильны, если в лоток принтера положить простую офисную бумагу.

Прекрасный лист формата А4, от вида и запаха которого с удовольствием начинает урчать любой лазерный принтер, оказывается совершенно неподготовленным к потокам разноцветных чернил, извергаемым на него из сотен сопел.

Поверхность обычной бумаги имеет волокнистую структуру, что обусловлено технологией ее производства. В итоге миниатюрные, строго рассчитанные по размеру капли начинают растекаться по поверхности самым непредсказуемым образом. При этом совершенно не важно, какая печать используется - термическая или пьезоэлектрическая. Одним из решений этой проблемы является использование пигментных чернил, представляющих собой взвесь дисперсных частиц в бесцветном жидком носителе, поскольку твердые частицы не могут проникнуть во внутренние слои и растечься по волокнам бумаги.

Чернила на пигментной основе позволяют получать яркие и насыщенные оттенки, однако есть у них и определенные недостатки, в частности низкая стойкость к внешним воздействиям.

Технология струйной печати такова, что наилучшего результата можно достичь только при использовании специальной бумаги. Фотографии на обычной бумаге выглядят более блеклыми и менее четкими. В отличие от обычной бумага со специальным покрытием и так называемая фотобумага имеют несколько специальных слоев. Распечатки на ней практически неотличимы от фотографий, полученных при печати с использованием химического фотопроцесса.

Простая бюджетная бумага для струйной печати, как правило, имеет плотность 90-105 г/м 2 , относительно небольшую толщину и прекрасный показатель белизны. Вследствие специальной обработки лицевой или обеих сторон такая бумага более устойчива к капризам чернил и препятствует их растеканию и проникновению вглубь листа.

Специальная фотобумага с глянцевой или матовой поверхностью обычно имеет плотность до 200 г/м 2 и представляет собой многослойное произведение современных технологий. Каждый из слоев выполняет определенные функции.

Нижний слой является основанием, обеспечивающим прочность и жесткость документа. Следующий слой играет роль оптического отражателя, придавая изображению яркость и белизну. Далее располагается основной связующий керамический или пластиковый слой, составляющий множество вертикальных каналов без длинных волокнистых образований вдоль поверхности листа и обеспечивающий необходимую плотность чернил в печатаемой точке. На абсорбент наносится последний, глянцевый или матовый защитный слой, придающий поверхности прочность и защищающий ее от внешних воздействий.

В процессе печати керамические частицы поглощают чернила, не давая им растекаться по поверхности. В результате форма точек и их ориентация остаются неизменными. Кроме того, можно не бояться случайного попадания влаги, поскольку глубокие и расположенные строго вертикально микрокапилляры сводят вероятность растекания к минимуму.

Специальная бумага для струйных принтеров стала панацеей от многих бед, но, к сожалению, довольно дорогой. Хочется, конечно, но... А потратиться стоит, чтобы хоть раз сравнить «небо» и «землю».

КомпьютерПресс 11"2001

Капельно-струйные технологии

В капельно-струйных технологиях капля образуется только тогда, когда это требуется для создания изображения. Создание и направление к запечатываемому материалу капель в этих устройствах происходит под действием давления. Для того чтобы чернила выбрасывались из сопла по одной капле, повышение давления должно иметь характер кратковременного импульса.

Капля может образоваться либо посредством изменения температуры (пузырьковая струйная технология) (рис. 19.3, а), либо объема камеры в сопловом канале (пьезоструйная технология) (рис. 19.3, б).

Капельно-струйная печать (рис. 19.3) классифицируется по способу образования отдельных капель.

При термической струйной печати (рис. 19.3, а) это происходит при нагревании жидкой краски до ее испарения. Под давлением пузырька пара из сопла выбрасывается капля краски – отсюда и название «пузырьковая струйная печать».

На рис. 19.11 показано, как из сопла при нагревании и образовании пузырька выпускается капля краски, а канал подготавливается для очередного цикла работы.

Рис. 19.11 – Образование капли при термической струйной печати

Современные технологии термической струйной печати позволяют создавать капли диаметром 35 мкм . Частота испускания капель находится в диапазоне от 5 до 8 кГц . Разрешающая способность устройств зависит от объема (диаметра) капель. При диаметре капель 35 мкм достигается разрешение 600 dpi , при этом диаметр точки на оттиске составляет 60 мкм . На разрешение влияет также вязкость краски, впитывающая способность бумаги и т. д.

Печатающие устройства, использующиеся в настольных издательских системах, оснащены преимущественно головками термической струйной печати. Для каждой краски (при многокрасочной печати) в них применяется отдельный элемент. Часто используется отдельная головка только для наиболее употребляемой черной краски, а для голубой, пурпурной и желтой – общая. Выпускается высокопроизводительное оборудование с разрешением в 600 dpi с частотой капель, например, в 8 кГц . Они имеют записывающие головки с 300 соплами. Конструкция головки имеет многорядное расположение сопел со смещением, чтобы получить необходимое разрешение и возможность управления.

Достоинством этого печатающего устройства является простота конструкции сопел. Помимо низкой стоимости изготовления, такие устройства имеют также ряд других преимуществ:

высокая надежность каждого сопла; упрощенная конструкция головки уменьшает размер печатающего узла, поскольку не требуется замена сопел;

Тонкие и конструктивно простые сопла могут располагаться плотнее и ближе друг к другу, что увеличивает разрешающую способность печати;

бесшумная работа печатающей головки.

Главными достоинствами термоэлектрических каплеструйных печатающих устройств являются достаточно высокое качество печати и низкая цена печатающей головки .

Ведущими производителями печатных систем, работающих по данной технологии, являются фирмы Hewlett-Packard и Canon .

Рисунок 19.3 – Капельно-струйная печать

Среди всех технологий создания изображения, свою популярность завоевал струйный способ печати.

Его применяют в принтерах, в том числе широкоформатных.

Преимуществом такой технологии является то, что капля краски формируется только в нужный момент, что позволяет получить высококачественные изображения.

Термическая струйная печать что это

В этой статье расскажем, термическая струйная печать что это, ее преимущества, принцип работы, и в каких случаях применяется.

Готовое изображение состоит из большого количества микроскопических точек краски различного цвета (цветная струйная термическая печать).

В момент, когда нужно нанести изображение, в микроскопической камере сопла находится краска, которую нужно каким-то образом вытолкнуть на поверхность запечатываемого материала (например, бумаги).

Термический способ печати заключается в том, что в камере находится нагревательный элемент, на который в момент печати поступает ток. Продолжительность одномоментного включения тока составляет малый период, до 2 миллионных доли секунды.

Под его действием элемент нагревается, температура краски увеличивается до 500º, увеличивается объем краски в сопле, что повышает давление в камере, из нее выталкивается нужна порция красителя. Есть информация, что в камере, в момент нагревания образуется давление больше 100 атмосфер, что достаточно много.

После этого образуется вакуум, который способствует втягиванию новой порции краски. Этот процесс повторяется по несколько тысяч раз в секунду.

Оборудование для термической струйной печати

Этот способ печати применяется в подавляющем большинстве струйных принтеров. Технология была представлена на рынок в начале 80-х годов прошлого века. Ведущими производителями являются компании Canon, HP, Lexmark.

Современное оборудование позволяет формировать капли размером до 35-40 мкм, что дает возможность получить высококачественное и детализированное изображение.

Как правило, в термических принтерах есть две печатающие головки. Одна предназначена для печатания черной краской, а другие для цветной печати (голубая, пурпурная и желтая краски).

В одной печатающей головке, в зависимости от модели, может быть до нескольких сотен сопел.

В зависимости от модели, головки могут быть неразрывно соединены с картриджами или встроенные в принтер, то есть многоразового пользования. Последний вариант дает возможность быть более уверенным в качестве печати, ведь этот элемент не успевает выработать свой ресурс. Но таким образом цена печати становится больше.

Преимущества и недостатки термической печати

Термическая струйная печать широко применяется в печатной технике, благодаря:

  • малошумность работы оборудования,
  • обеспечивает высокое качество и разрешение печати,
  • технология печати термическая струйная позволяет получить надежные печатающие головки,
  • стабильность работы принтеров на этой технологии,
  • высокая скорость печатания.

Недостатки термического печати:

Не всегда удается точно регулировать размер полученных капель,

В процессе работы могут образуются капли спутники, которые ухудшают качество полученного изображения,

Печатная головка иногда требует чистки,

Желательно выбирать специальную бумагу, который уменьшит растекания краски и коробление бумаги,

Дорогие картриджи с краской. Хотя некоторые рискуют и заказывают неоригинальные, которые немного дешевле.

Вывод

Струйная термальная печать дает возможность получить профессиональную печать по невысокой цене. Качество полученного изображения зависит от точности изготовления сопла, строения эжекционной камеры. Также, на получить изображения влияют характеристики используемого красителя (вязкость, поверхностное натяжение, способность к нагреву и испарения).

Надеемся, вам была интересна эта статья, которая дала ответ на вопрос: термическая струйная печать что это и в каких случаях применяется.

Похожие статьи

© 2024 karkywa.ru. Программы. Интернет. Безопасность. Компьютеры. Windows.